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Singular Hermitian metrics on torsion-free sheaves on
normal analytic varieties

Let £ be a torsion-free coherent sheaf on a normal analytic variety
X. A singular Hermitian metric h on £ is a possibly singular
Hermitian metric on the vector bundle £|x,. Here £|x, is the
restriction of £ to Xp := Xieg N Xg, where X, is the non-singular
locus of X and X¢ is the maximally locally free locus of £. Note
that Xp < X is a Zariski open set with codim(X\Xp) = 2. A
singular metric on a vector bundle is locally a measurable map to
the space of Hermitian matrix satisfying 0 < det h < oo almost
everywhere (conpatible with the transition functions).
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Weak positivity

For a smooth (1,1)-form 6 on X with local potential, we write as
V=10, > 0®id on X

if the function log |e|x+ — f is psh for any local section e of £*,
where f is a local potential of § (i.e., 0 = v/—100f) and h* is the
induced metric on the dual sheaf £* := Hom(€,Ox). The
plurisubharmonicity can be extended through a Zariski closed set
of codimension > 2; therefore it is sufficient to check that

log |e|p+ — f is a psh function on an open set of Xj by
codim(X\Xp) = 2.
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Weak positivity

Let X be a Kahler space, wx be a Kahler form on X, and 6 be a
(1,1)-form on X with local potential. A torsion-free sheaf £ on X
is said to be f-weakly positively curved if there exist singular
Hermitian metrics {h-}.~0 on & such that

V=10, = (0 — ewx) ®id on X. We simply say that & is weakly
positively curved in the case of § = 0.
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Strongly pseudo-effective vector bundle

Advantage of weakly positively curved sheaf:

Defined for non-necessarily locally free sheaf over non necessarily
smooth space.

Disadvantage of weakly positively curved sheaf:

Difficult to study second Chern class (No definition in general!)

In general, the direct image is reflexive under flat morphism. To
show the locally-freeness, one usually use Bando-Siu’s result
stating that a stable reflexive sheaf with vanishing first Chern class
over a compact Kahler manifold is a projectively flat vector bundle
if the second Chern class is trivial.
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Nef vector bundle

Definition. (Hartshorne, '66)

Let X be a projective manifold and E a holomorphic vector bundle
on X. E is called ample if and only if Op(g)(1) is an ample line
bundle.

Definition. (DPS, '94)

Let (X,w) be a compact Kahler manifold and E a holomorphic
vector bundle on X. E is called nef if and only if Op(g)(1) is a nef
line bundle (i.e.Ve > 0, there exists a smooth metric (Op(g)(1), he)
such that the Chern curvature representing c1(Op(g)(1)) satisfies
i9(OpE)(1), he) = —em*w) where 7 : P(E) — X.
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Strongly psef vector bundle

Pseudo-effective line bundle

A line bundle L over a compact manifold X is called psef if
3T > 0 € ci(L) in the sense of currents.

Definition. BDPP, '13

Let (X,w) be a compact Kahler manifold and E a holomorphic
vector bundle on X. Then E is said to be strongly pseudo-effective
(strongly psef for short) if the line bundle Op(g)(1) is
pseudo-effective on the projectivized bundle P(E) of hyperplanes of
E, i.e. if for every € > 0 there exists a singular metric h. with
analytic singularities on Op(g)(1) and a curvature current

i©(he) = —em*w, and if the projection 7(Sing(h.)) of the singular
set of h. is not equal to X.
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Pseudo-effective vector bundle

Equivalent definition, BDPP, '13

Let X be a projective manifold. A holomorphic vector bundle E on
X is pseudo-effective if and only if for any given ample line bundle
A on X and any positive integers mg, pp, the vector bundle

SP((S"E)® A)

is generically generated (i.e. generated by its global sections on
the complement X\ Z,, , of some proper algebraic set Z, , < X)
for some [resp. every] m = mg and p = py.
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Regularisation

Any T = 0 in the sense of currents is locally limit of smooth
positive forms.

(Global) Regularisation, Demailly, '82

let T =6+ i00p be a closed (1,1)-current, where 6 is a smooth
form. Suppose that a smooth (1,1)-form ~ is given such that

T > ~. Then there exists a decreasing sequence of smooth
functions oy converging to ¢ such that, if we set Ty 1= 0 + iddyy,
we have

(1) Tx — T weakly,

(2) Tk = v — CAkw, where C > 0 is a constant depending on
(X,w) only, and A, is a decreasing sequence of continuous
functions such that \x(x) — v(T,x) for all x € X.

Xiaojun WU Université Cote d'azur

Compact Kahler threefolds with nef anticanonical line bundle Lecture 2



Recap Strongly pseudo-effective vector bundle Segre current End of proof
00000 00000000 0000000000000 000000

Regularisation

(Global) Regularisation, Demailly, '92

let T =0+ i0dp be a closed (1,1)-current, where § is a smooth
form. Suppose that a smooth (1,1)-form ~ is given such that

T > ~. Then there exists a decreasing sequence of quasi-psh
functions ¢y converging to ¢ such that, if we set T 1= 0 + iddyy,
we have

(1) Ty — T weakly,

(2) ¢k is locally given by clog > |gi|*> + O(1) where c > 0, g; are
local holomorphic functions and O(1) is bounded. (We say that ¢y
has analytic singularities.)

(3) Tk = v — ekw in the sense of currents, where £ is a decreasing
sequence such that g, — 0.
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Formal property

Proposition,-22

E strongly psef = det(E) is psef.

E strongly psef <= for some m > 0, S™E strongly psef.
For surjective bundle morphism E — @Q, E strongly psef = @
strongly psef

E, F strongly psef = E® F, E ® F strongly psef.

Example

E = ®L; nef/strongly psef <= Vi, L; nef/psef.
Op()(1) is big/psef < 3ip s.t. L;, is big/psef.
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Comparison

Finsler metric is a continuous nonnegative function F : E — [0, o0[
defined on the vector bundle so that for each point x, v € E,

F(Av) = [A|F(v) for all A € C (homogeneity).

F(v) > 0 unless v = 0 (positive definiteness).
Hermitian metric is Finsler.
Metric on Op(g)(1) is equivalent to Finsler metric on E*.

Op(g)(1) is an ample line bundle if and only if E* carries a smooth
Finsler metric which is strictly plurisubharmonic on the total space

E\{0}.
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Comparison

Griffiths Conjecture

Ampleness of E is equivalent to the existence of a Griffiths positive
hermitian metric, thus to the existence of a hermitian strictly
plurisubharmonic metric on E*.

In other words, how to construct Griffiths positive Hermitian
metric from the Finsler metric?

Similarly, a weakly positively curved vector bundle is strongly
pseudoeffective.

Conversely, it is conjectured to be true as Griffiths type conjecture.
Known in rank 1 case or over base of dimension 1 (Wu'22).

Xiaojun WU Université Cote d'azur

Compact Kahler threefolds with nef anticanonical line bundle Lecture 2



Recap

Strongly pseudo-effective vector bundle

Segre current

End of proof

«0O0» «Fr «E» « Q>



Recap Strongly pseudo-effective vector bundle Segre current End of proof
00000 000000000 0@00000000000 000000

Background

If E nef, the Segre classes
. r—1+i
Si(E) == m«(c1(Op(g) (1)) )

contain a closed positive current where E is of rank r and
7 :P(E) — X is the projection. (See e.g. DPS '94)

Note that c;1(E) = s1(E), s2(E) = c1(E)? — c2(E).

What happens if E is strongly pseudoeffective?
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Segre current

Example

Consider X the blow up P? at a point with exceptional divisor E.
The closed positive current associated to E denoted by [E] does
not well define [E] A [E] as closed positive current representing

the correct cohomology class since {[E]}? = —1.

Theorem,Demailly, agbook Chap. Ill.4

Let T1,---, T, be closed positive currents with analytic
singularities such that Vii < --- < ip,, the codimension of
n;;Sing(Tj;) is at least m. Then Ty A --- A T, is well-defined as
positive current and represents the cohomology class

{Ti} A A {T,}.
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Segre current

Question

In the relative situation (i.e. a proper submersion pi : X — Y
between compact Kahler manifolds of relative dimension r — 1),
how to define 7. (T1 A --- A T,) given weak codimension condition
on 7(Sing(T;))?

This question appears previously in LRRS'18 without estimate of
Lelong number.
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Segre current

Theorem,-22

In the relative situation, assume:

(1) (codimension condition) T is a closed positive (1,1)—current
in the cohomology class {a} € H(X,R) such that T has analytic
singularities and is smooth on X\7~!(Z) with Z a closed analytic
set of codimension at least k.

(2) (existence of local reference potential) for any y € Y, there
exist an open neighborhood U of y and a quasi-psh function v on
X such that o + i00y > 0 in the sense of currents on 7—1(U) and
1) is smooth outside a closed analytic set of codimension at least
k+r.

Then there exists a closed positive current in the cohomology class
e 7K=L with multiplicity estimate.
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Segre current

Construction

Let ) be a local reference potential. Then the Monge-Ampére
operator (a + id0log(e¥ + de¥)) 1tk is well defined for every
0 > 0 with the codimension condition. By weak compactness,

Tw (0 + 100 log(e? + J,e¥)) 1tk

which all belong to the cohomology class mxa"1*¥, has a weak
limit as 9, — 0 for some subsequence.

Difficulty

(1) Such % is not global positive (i.e. a + id0v is not necessarily
positive).
(2) The limit is not necessarily unique a priori.
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Segre current

Note that (2) implies that the limit is positive since it is positive
on the open set where 9 is defined.

Proposition,ABW19 BI19, -22

Let ¢ be a quasi-psh function with analytic singularities over on a
(connected) complex n-dimensional manifold X, and u e C*(X).
Then for any exponent p (1 < p < n), the asymptotic limit of
Monge-Ampere operator lims_,o(idd log(e® + de“))P is always well
defined as a current (but not necessarily positive, even when

i0dp = 0, and the limit may depend on u).
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Segre current

Denote by Ty, T the limit currents obtained with 7 and ;.
Assume that A’ is the union of the singular loci of 11 and 5. By
assumption, w(A’) is of codimension at least kK + 1 in X. Then
Ty — T» is a normal (k, k)-current supported in w(A) U w(A’) by
the continuity of Bedford-Taylor operator.
The support theorem yields

Ti—T2=) a2
where Z,, are the codimension k irreducible components of 7 (A)
and ¢, € R.
Take a local cut-off function 6 and prove (to show that ¢, =0 )
that

6—0

Xiaojun WU Université Cote d'azur

lim T TREr=1 _ p ThEr=1) A gk = 0.
X 1,6 2,6

Compact Kahler threefolds with nef anticanonical line bundle Lecture 2



Recap Strongly pseudo-effective vector bundle Segre current End of proof
00000 000000000 0000000080000 000000

Segre current

A direct calculation shows that
Sy (ms Tll‘;;”_l — T Tzkj{r_l) A Bw" K is equal to

r+k—1 ) U1
— ; i + Je
1000 A WK T A Tk ) jog [ E210€ )
L»(E)I e J;) 15 " 120 S\ ev + oet2

Define

Foe | e¥ + de¥t
678\ ev 1+ gev2 )

which is a uniformly bounded function on V such that V is
outside of the image of the singular locus of 1, 1> under . Note
also that the bound is independent of 4.
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Segre current

Define Z, := {z € V,d(z,m(A)) < n} with respect to the Kahler
metric w. The volume of Z, with respect to w tends to 0 as 7 — 0.
Separate the estimate on Z, and X\Z,. To conclude, for the first
one, use Fubini theorem and that the restriction of a on each fiber
is constant.

For the second one, use that Fs tends to O almost everywhere as

0 — 0. The convergence is locally uniform outside of the pole set
A of .
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Segre current

Corollary, -22

Let E be a strongly psef vector bundle of rank r over a compact
Kahler manifold (X,w). Let (Op(g)(1), he) be singular metric with
analytic singularities such that

’e(OP(E)(1)7 he) = —em*w

and the codimension of 7(Sing(h.)) is at least k in X. Then there
exists a (k, k)-positive current in the class
T4 (c1(Op(g)y (1)) + em*{w}) o1,
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Numerically flat vector bundle

Theorem, -22

Let E be a strongly psef vector bundle over a compact Kahler
manifold (X, w) with ¢;(E) = 0. Then E is a nef vector bundle.

Idea of proof: 3T, > —em*w € c1(Op(g)(1)) in the sense of
currents with analytic singularities.

T (Te + em*w)" € c1(E) + re{w} = 0 where r is rank of E.

ci(E) =0= (T + er*w)" — 0.

Lelong number estimate = the Lelong number of T, is small. We
conclude by regularisation.
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Application

Proposition,-22

An irreducible symplectic, or Calabi-Yau manifold does not have
strongly psef tangent bundle or cotangent bundle.

In the singular and projective setting, a stronger result is proven in
Theorem 1.6 of [Horing-Peternell’19] and Corollary 6.5 [Druel'18]
for threefolds. (They prove that in this case Op(g)(1) is not a psef
line bundle where E is the tangent bundle or the cotangent
bundle.)
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Q-—conic bundle

Q—conic bundle (Mori-Prokhorov 08)

Let X and S be normal analytic varieties. A fibration ¢ : X — S is
called a Q-conic bundle if it satisfies following conditions:

X has terminal singularities;
p: X — S is equi-dimensional and of relative dimension 1;

—Kx is p-ample.

Discrimant divisor(Mori-Prokhorov 08)

The discriminant divisor A is defined by the union of divisorial
components of the non-smooth locus
{s € S|y is not a smooth fibration at s}.
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classification of 3-dim Q—conic bundle

Mori-Prokhorov 08

Let ¢ : X — S be a 3-dimensional Q-conic bundle and A = S be
the discriminant divisor. Then s ¢ A if and only if o : X —> S is
toroidal at s.

Example (A global Q—conic bundle)

For a Kummer surface S := A/uy with a torus A of dimension 2,

we consider
X" = (P! x A)/uz — S = Alua,

where pp actson P! x Aby —1-(t,z1,20) = (—t, —z1, —22).
Both S and X’ are simply connected and ¢ : X’ — S is a Q-conic
bundle such that —Kx is nef. However X’ is not outcome of
MMP for some smooth X with —Kx nef (cf. Peternell-Serrano).
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Consequence

Corollary, Matsumura-Wu 23

We consider the MF space ¢ : X’ = Xy — S in 3-dim Kahler
MMP. Then, we have:

(1) The Bott-Chern cohomology class —4ci(Ks) — c1(A) is
pseudo-effective, where A is the discriminant divisor of the MF
space ¢ : X — S (which is a Q-conic bundle).

(2) The relation A = 0 and c;(Ks) = 0 holds; in particular,

¢ : X' — S is toroidal over S. Furthermore, when S are smooth,
the variety X is automatically smooth and ¢ : X/ — S is a locally
trivial P*-bundle.
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End of proof

Let ¢ : X’ — S be the MF space.

(1) Show that p.(—pKx:) is weakly positively curved with trivial
first Chern class for 1 « p by positivity of direct image.

(2) Show that ¢.(—pKx-) is numerical flat orbifold vector bundle
(by -23).

(3) By Campana04, S is either quotient of torus or normal K3.
Show that ¢, (pB) is trivial over some quasi-étale cover.
Deduce a contradiction by intersection numbers if S is not
smooth.
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End of proof

In general, the positivity of direct image is insensible to singularity.
It is conjectured that the fundamental group of the regular part of
kit compact Kahler Calabi-Yau space is infinite if and only if it
contains a torus factor in the singular Beauville-Bogomolov
decomposition theorem. If this holds, Step 3 should be able to
generalise to high dimensional case.
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