Compact Kähler threefolds with nef anticanonical line bundle Lecture 2

Xiaojun WU

Université Côte d'azur

20 October 2023

Xiaojun WU

Université Côte d'azur

イロト イボト イヨト イヨト

End of proof

Table of Contents

2 Strongly pseudo-effective vector bundle

3 Segre current

4 End of proof

Xiaoiun WU

Université Côte d'azur

< ロ > < 回 > < 回 > < 回 > < 回 >

Singular Hermitian metrics on torsion-free sheaves on normal analytic varieties

Let \mathcal{E} be a torsion-free coherent sheaf on a normal analytic variety X. A singular Hermitian metric h on \mathcal{E} is a possibly singular Hermitian metric on the vector bundle $\mathcal{E}|_{X_0}$. Here $\mathcal{E}|_{X_0}$ is the restriction of \mathcal{E} to $X_0 := X_{reg} \cap X_{\mathcal{E}}$, where X_{reg} is the non-singular locus of X and $X_{\mathcal{E}}$ is the maximally locally free locus of \mathcal{E} . Note that $X_0 \subset X$ is a Zariski open set with $\operatorname{codim}(X \setminus X_0) \ge 2$. A singular metric on a vector bundle is locally a measurable map to the space of Hermitian matrix satisfying $0 < \det h < \infty$ almost everywhere (conpatible with the transition functions).

Xiaojun WU

イロト イボト イヨト イヨト

Weak positivity

For a smooth (1,1)-form θ on X with local potential, we write as

$$\sqrt{-1}\Theta_h \ge \theta \otimes \mathrm{id}$$
 on X

if the function $\log |e|_{h^*} - f$ is psh for any local section e of \mathcal{E}^* , where f is a local potential of θ (i.e., $\theta = \sqrt{-1}\partial\overline{\partial}f$) and h^* is the induced metric on the dual sheaf $\mathcal{E}^* := Hom(\mathcal{E}, \mathcal{O}_X)$. The plurisubharmonicity can be extended through a Zariski closed set of codimension ≥ 2 ; therefore it is sufficient to check that $\log |e|_{h^*} - f$ is a psh function on an open set of X_0 by $\operatorname{codim}(X \setminus X_0) \geq 2$.

Xiaojun WU

Université Côte d'azur

イロト イボト イヨト イヨト

Weak positivity

Let X be a Kähler space, ω_X be a Kähler form on X, and θ be a (1,1)-form on X with local potential. A torsion-free sheaf \mathcal{E} on X is said to be θ -weakly positively curved if there exist singular Hermitian metrics $\{h_{\varepsilon}\}_{\varepsilon>0}$ on \mathcal{E} such that $\sqrt{-1}\Theta_{h_{\varepsilon}} \ge (\theta - \varepsilon \omega_X) \otimes \mathrm{id}$ on X. We simply say that \mathcal{E} is weakly positively curved in the case of $\theta = 0$.

Xiaojun WU

Université Côte d'azur

イロト イポト イヨト イヨト

End of proof

Strongly pseudo-effective vector bundle

Advantage of weakly positively curved sheaf:

Defined for non-necessarily locally free sheaf over non necessarily smooth space.

Disadvantage of weakly positively curved sheaf:

Difficult to study second Chern class (No definition in general!) In general, the direct image is reflexive under flat morphism. To show the locally-freeness, one usually use Bando-Siu's result stating that a stable reflexive sheaf with vanishing first Chern class over a compact Kähler manifold is a projectively flat vector bundle if the second Chern class is trivial.

イロト イポト イヨト イヨト

End of proof

Table of Contents

2 Strongly pseudo-effective vector bundle

3 Segre current

4 End of proof

Xiaojun WU

Université Côte d'azur

< ロ > < 回 > < 回 > < 回 > < 回 >

End of proof

Nef vector bundle

Definition. (Hartshorne, '66)

Let X be a projective manifold and E a holomorphic vector bundle on X. E is called ample if and only if $\mathcal{O}_{\mathbb{P}(E)}(1)$ is an ample line bundle.

Definition. (DPS, '94)

Let (X, ω) be a compact Kähler manifold and E a holomorphic vector bundle on X. E is called nef if and only if $\mathcal{O}_{\mathbb{P}(E)}(1)$ is a nef line bundle (i.e. $\forall \varepsilon > 0$, there exists a smooth metric $(\mathcal{O}_{\mathbb{P}(E)}(1), h_{\varepsilon})$ such that the Chern curvature representing $c_1(\mathcal{O}_{\mathbb{P}(E)}(1))$ satisfies $i\Theta(\mathcal{O}_{\mathbb{P}(E)}(1), h_{\varepsilon}) \ge -\varepsilon \pi^* \omega)$ where $\pi : \mathbb{P}(E) \to X$.

Xiaojun WU

Université Côte d'azur

イロト イボト イヨト イヨト

Strongly psef vector bundle

Pseudo-effective line bundle

A line bundle *L* over a compact manifold *X* is called psef if $\exists T \ge 0 \in c_1(L)$ in the sense of currents.

Definition. BDPP, '13

Let (X, ω) be a compact Kähler manifold and E a holomorphic vector bundle on X. Then E is said to be strongly pseudo-effective (strongly psef for short) if the line bundle $\mathcal{O}_{\mathbb{P}(E)}(1)$ is pseudo-effective on the projectivized bundle $\mathbb{P}(E)$ of hyperplanes of E, i.e. if for every $\varepsilon > 0$ there exists a singular metric h_{ε} with analytic singularities on $\mathcal{O}_{\mathbb{P}(E)}(1)$ and a curvature current $i\Theta(h_{\varepsilon}) \ge -\varepsilon\pi^*\omega$, and if the projection $\pi(\operatorname{Sing}(h_{\varepsilon}))$ of the singular set of h_{ε} is not equal to X.

End of proof

Pseudo-effective vector bundle

Equivalent definition, BDPP, '13

Let X be a projective manifold. A holomorphic vector bundle E on X is pseudo-effective if and only if for any given ample line bundle A on X and any positive integers m_0 , p_0 , the vector bundle

 $S^{p}((S^{m}E)\otimes A)$

is generically generated (i.e. generated by its global sections on the complement $X \setminus Z_{m,p}$ of some proper algebraic set $Z_{m,p} \subset X$) for some [resp. every] $m \ge m_0$ and $p \ge p_0$.

Xiaojun WU

Université Côte d'azur

イロト イボト イヨト イヨト

Regularisation

Any $T \ge 0$ in the sense of currents is locally limit of smooth positive forms.

(Global) Regularisation, Demailly, '82

let $T = \theta + i\partial\overline{\partial}\varphi$ be a closed (1, 1)-current, where θ is a smooth form. Suppose that a smooth (1, 1)-form γ is given such that $T \ge \gamma$. Then there exists a decreasing sequence of smooth functions φ_k converging to φ such that, if we set $T_k := \theta + i\partial\overline{\partial}\varphi_k$, we have

(1)
$$T_k \rightarrow T$$
 weakly,

(2) $T_k \ge \gamma - C\lambda_k \omega$, where C > 0 is a constant depending on (X, ω) only, and λ_k is a decreasing sequence of continuous functions such that $\lambda_k(x) \rightarrow \nu(T, x)$ for all $x \in X$.

Xiaojun WU

Université Côte d'azur

イロト イボト イヨト イヨト

End of proof

Regularisation

(Global) Regularisation, Demailly, '92

let $T = \theta + i\partial\overline{\partial}\varphi$ be a closed (1,1)-current, where θ is a smooth form. Suppose that a smooth (1,1)-form γ is given such that $T \ge \gamma$. Then there exists a decreasing sequence of quasi-psh functions φ_k converging to φ such that, if we set $T_k := \theta + i\partial\overline{\partial}\varphi_k$, we have

(1)
$$T_k \rightarrow T$$
 weakly,

(2) φ_k is locally given by $c \log \sum_i |g_i|^2 + O(1)$ where $c \ge 0$, g_i are local holomorphic functions and O(1) is bounded. (We say that φ_k has analytic singularities.)

(3) $T_k \ge \gamma - \varepsilon_k \omega$ in the sense of currents, where ε_k is a decreasing sequence such that $\varepsilon_k \to 0$.

Xiaojun WU

Université Côte d'azur

イロト イボト イヨト イヨト

Formal property

Proposition,-22

E strongly psef $\Rightarrow \det(E)$ is psef.

E strongly psef \iff for some m > 0, $S^m E$ strongly psef.

For surjective bundle morphism $E \rightarrow Q$, E strongly psef $\Rightarrow Q$ strongly psef

E, F strongly psef $\Rightarrow E \oplus F, E \otimes F$ strongly psef.

Example

 $E = \bigoplus L_i$ nef/strongly psef $\iff \forall i, L_i$ nef/psef. $\mathcal{O}_{\mathbb{P}(E)}(1)$ is big/psef $\iff \exists i_0 \text{ s.t. } L_{i_0}$ is big/psef.

Xiaojun WU

Université Côte d'azur

イロト 不得 トイヨト イヨト

Recap 00000 Segre current

Comparison

Finsler metric is a continuous nonnegative function $F : E \to [0, \infty[$ defined on the vector bundle so that for each point $x, v \in E_x$

$$F(\lambda v) = |\lambda|F(v)$$
 for all $\lambda \in \mathbb{C}$ (homogeneity).

F(v) > 0 unless v = 0 (positive definiteness).

Hermitian metric is Finsler.

Metric on $\mathcal{O}_{\mathbb{P}(E)}(1)$ is equivalent to Finsler metric on E^* . $\mathcal{O}_{\mathbb{P}(E)}(1)$ is an ample line bundle if and only if E^* carries a smooth Finsler metric which is strictly plurisubharmonic on the total space $E^* \setminus \{0\}$.

Xiaojun WU

Université Côte d'azur

イロト イボト イヨト イヨト

Comparison

Griffiths Conjecture

Ampleness of E is equivalent to the existence of a Griffiths positive hermitian metric, thus to the existence of a hermitian strictly plurisubharmonic metric on E^* .

In other words, how to construct Griffiths positive Hermitian metric from the Finsler metric?

Similarly, a weakly positively curved vector bundle is strongly pseudoeffective.

Conversely, it is conjectured to be true as Griffiths type conjecture. Known in rank 1 case or over base of dimension 1 (Wu'22).

Xiaojun WU

Université Côte d'azur

イロト イボト イヨト イヨト

End of proof

Table of Contents

2 Strongly pseudo-effective vector bundle

3 Segre current

4 End of proof

Xiaojun WU

Université Côte d'azur

< ロ > < 回 > < 回 > < 回 > < 回 >

Recap 00000 Segre current

Background

If E nef, the Segre classes

$$s_i(E) := \pi_*(c_1(\mathcal{O}_{\mathbb{P}(E)}(1))^{r-1+i})$$

contain a closed positive current where E is of rank r and $\pi : \mathbb{P}(E) \to X$ is the projection. (See e.g. DPS '94) Note that $c_1(E) = s_1(E), s_2(E) = c_1(E)^2 - c_2(E)$. What happens if E is strongly pseudoeffective?

Xiaojun WU

Université Côte d'azur

Segre current

Example

Consider X the blow up \mathbb{P}^2 at a point with exceptional divisor E. The closed positive current associated to E denoted by [E] does not well define $[E] \wedge [E]$ as closed positive current representing the correct cohomology class since $\{[E]\}^2 = -1$.

Theorem, Demailly, agbook Chap. III.4

Let T_1, \dots, T_r be closed positive currents with analytic singularities such that $\forall i_1 < \dots < i_m$, the codimension of $\cap_{i_j} Sing(T_{i_j})$ is at least m. Then $T_1 \land \dots \land T_r$ is well-defined as positive current and represents the cohomology class $\{T_1\} \land \dots \land \{T_r\}$.

Université Côte d'azur

イロト イボト イヨト イヨト

Xiaoiun WU

Segre current

Segre current

Question

In the relative situation (i.e. a proper submersion $pi: X \to Y$ between compact Kähler manifolds of relative dimension r-1), how to define $\pi_*(T_1 \land \cdots \land T_r)$ given weak codimension condition on $\pi(Sing(T_i))$?

This question appears previously in LRRS'18 without estimate of Lelong number.

Université Côte d'azur

イロト イボト イヨト イヨト

Segre current

Theorem,-22

In the relative situation, assume:

(1) (codimension condition) T is a closed positive (1,1)-current in the cohomology class $\{\alpha\} \in H^{1,1}(X,\mathbb{R})$ such that T has analytic singularities and is smooth on $X \setminus \pi^{-1}(Z)$ with Z a closed analytic set of codimension at least k.

(2) (existence of local reference potential) for any $y \in Y$, there exist an open neighborhood U of y and a quasi-psh function ψ on X such that $\alpha + i\partial \overline{\partial} \psi \ge 0$ in the sense of currents on $\pi^{-1}(U)$ and ψ is smooth outside a closed analytic set of codimension at least k + r.

Then there exists a closed positive current in the cohomology class $\pi_* \alpha^{r+k-1}$ with multiplicity estimate.

End of proof

Segre current

Construction

Let ψ be a local reference potential. Then the Monge-Ampère operator $(\alpha + i\partial\overline{\partial}\log(e^{\varphi} + \delta e^{\psi}))^{r-1+k}$ is well defined for every $\delta > 0$ with the codimension condition. By weak compactness,

$$\pi_*(\alpha + i\partial\overline{\partial}\log(e^{\varphi} + \delta_{\nu}e^{\psi}))^{r-1+k}$$

which all belong to the cohomology class $\pi_* \alpha^{r-1+k}$, has a weak limit as $\delta_{\nu} \to 0$ for some subsequence.

Difficulty

(1) Such ψ is not global positive (i.e. $\alpha + i\partial \overline{\partial} \psi$ is not necessarily positive).

(2) The limit is not necessarily unique a priori.

Xiaojun WU

Université Côte d'azur

Segre current

Note that (2) implies that the limit is positive since it is positive on the open set where ψ is defined.

Proposition, ABW19 BI19, -22

Let φ be a quasi-psh function with analytic singularities over on a (connected) complex *n*-dimensional manifold X, and $u \in C^{\infty}(X)$. Then for any exponent p $(1 \leq p \leq n)$, the asymptotic limit of Monge-Ampère operator $\lim_{\delta \to 0} (i\partial \overline{\partial} \log(e^{\varphi} + \delta e^{u}))^{p}$ is always well defined as a current (but not necessarily positive, even when $i\partial \overline{\partial} \varphi \geq 0$, and the limit may depend on u).

Xiaojun WU

Université Côte d'azur

イロト イボト イヨト イヨト

Recap 00000 Segre current

Segre current

Denote by T_1 , T_2 the limit currents obtained with ψ_1 and ψ_2 . Assume that A' is the union of the singular loci of ψ_1 and ψ_2 . By assumption, $\pi(A')$ is of codimension at least k + 1 in X. Then $T_1 - T_2$ is a normal (k, k)-current supported in $\pi(A) \cup \pi(A')$ by the continuity of Bedford-Taylor operator.

The support theorem yields

$$T_1 - T_2 = \sum_{\nu} c_{\nu} [Z_{\nu}]$$

where Z_{ν} are the codimension k irreducible components of $\pi(A)$ and $c_{\nu} \in \mathbb{R}$.

Take a local cut-off function heta and prove (to show that $c_{
u}=0$) that

$$\lim_{\delta \to 0} \int_X \left(\pi_* T_{1,\delta}^{k+r-1} - \pi_* T_{2,\delta}^{k+r-1} \right) \wedge \theta \omega^{n-k} = 0.$$

Xiaojun WU

Université Côte d'azur

Recap 00000 Segre current

イロト イボト イヨト イヨト

Université Côte d'azur

Segre current

A direct calculation shows that $\int_{X} \left(\pi_{*} T_{1,\delta}^{k+r-1} - \pi_{*} T_{2,\delta}^{k+r-1} \right) \wedge \theta \omega^{n-k} \text{ is equal to}$ $\int_{\mathbb{P}(E)} i \partial \overline{\partial} \theta \wedge \omega^{n-k} \wedge \left(\sum_{i=0}^{r+k-1} T_{1,\delta}^{j} \wedge T_{2,\delta}^{r+k-1-j} \right) \log \left(\frac{e^{\varphi} + \delta e^{\psi_{1}}}{e^{\varphi} + \delta e^{\psi_{2}}} \right).$

Define

$$\mathcal{F}_{\delta} := \log igg(rac{e^{arphi} + \delta e^{\psi_1}}{e^{arphi} + \delta e^{\psi_2}} igg),$$

which is a uniformly bounded function on V such that \overline{V} is outside of the image of the singular locus of ψ_1 , ψ_2 under π . Note also that the bound is independent of δ .

Segre current

Define $Z_{\eta} := \{z \in V, d(z, \pi(A)) \leq \eta\}$ with respect to the Kähler metric ω . The volume of Z_{η} with respect to ω tends to 0 as $\eta \to 0$. Separate the estimate on Z_{η} and $X \setminus Z_{\eta}$. To conclude, for the first one, use Fubini theorem and that the restriction of α on each fiber is constant.

For the second one, use that F_{δ} tends to 0 almost everywhere as $\delta \rightarrow 0$. The convergence is locally uniform outside of the pole set A of φ .

イロト イボト イヨト イヨト

Segre current

Corollary, -22

Let *E* be a strongly psef vector bundle of rank *r* over a compact Kähler manifold (X, ω) . Let $(\mathcal{O}_{\mathbb{P}(E)}(1), h_{\varepsilon})$ be singular metric with analytic singularities such that

$$i\Theta(\mathcal{O}_{\mathbb{P}(E)}(1),h_{\varepsilon}) \ge -\varepsilon\pi^*\omega$$

and the codimension of $\pi(\operatorname{Sing}(h_{\varepsilon}))$ is at least k in X. Then there exists a (k, k)-positive current in the class $\pi_*(c_1(\mathcal{O}_{\mathbb{P}(E)}(1)) + \varepsilon \pi^* \{\omega\})^{r+k-1}$.

Xiaojun WU

Université Côte d'azur

イロト イボト イヨト イヨト

イロト 不得 トイヨト イヨト

Université Côte d'azur

Numerically flat vector bundle

Theorem, -22

Let *E* be a strongly psef vector bundle over a compact Kähler manifold (X, ω) with $c_1(E) = 0$. Then *E* is a nef vector bundle.

Idea of proof: $\exists T_{\varepsilon} \ge -\varepsilon \pi^* \omega \in c_1(\mathcal{O}_{\mathbb{P}(E)}(1))$ in the sense of currents with analytic singularities. $\pi_*(T_{\varepsilon} + \varepsilon \pi^* \omega)^r \in c_1(E) + r\varepsilon \{\omega\} \ge 0$ where *r* is rank of *E*. $c_1(E) = 0 \Rightarrow \pi_*(T_{\varepsilon} + \varepsilon \pi^* \omega)^r \to 0$. Lelong number estimate \Rightarrow the Lelong number of T_{ε} is small. We

conclude by regularisation.

Xiaojun WU

Application

Proposition,-22

An irreducible symplectic, or Calabi-Yau manifold does not have strongly psef tangent bundle or cotangent bundle.

In the singular and projective setting, a stronger result is proven in Theorem 1.6 of [Höring-Peternell'19] and Corollary 6.5 [Druel'18] for threefolds. (They prove that in this case $\mathcal{O}_{\mathbb{P}(E)}(1)$ is not a psef line bundle where E is the tangent bundle or the cotangent bundle.)

Xiaojun WU

Université Côte d'azur

イロト イボト イヨト イヨト

End of proof

Table of Contents

2 Strongly pseudo-effective vector bundle

3 Segre current

4 End of proof

Xiaoiun WU

Université Côte d'azur

(a)

$\mathbb{Q}-\mathsf{conic}$ bundle

Q-conic bundle (Mori-Prokhorov 08)

Let X and S be normal analytic varieties. A fibration $\varphi : X \to S$ is called a \mathbb{Q} -conic bundle if it satisfies following conditions:

X has terminal singularities;

- $\varphi: X \rightarrow S$ is equi-dimensional and of relative dimension 1;
- $-K_X$ is φ -ample.

Discrimant divisor(Mori-Prokhorov 08)

The discriminant divisor Δ is defined by the union of divisorial components of the non-smooth locus $\{s \in S \mid \varphi \text{ is not a smooth fibration at s}\}.$

イロト イボト イヨト イヨト

End of proof

classification of 3-dim $\mathbb{Q}-\text{conic}$ bundle

Mori-Prokhorov 08

Let $\varphi : X \to S$ be a 3-dimensional \mathbb{Q} -conic bundle and $\Delta \subset S$ be the discriminant divisor. Then $s \notin \Delta$ if and only if $\varphi : X \to S$ is toroidal at s.

Example (A global \mathbb{Q} -conic bundle)

For a Kummer surface $S := A/\mu_2$ with a torus A of dimension 2, we consider

$$X' := (\mathbb{P}^1 \times A)/\mu_2 \rightarrow S = A/\mu_2,$$

where μ_2 acts on $\mathbb{P}^1 \times A$ by $-1 \cdot (t, z_1, z_2) = (-t, -z_1, -z_2)$. Both *S* and *X'* are simply connected and $\varphi : X' \to S$ is a \mathbb{Q} -conic bundle such that $-K_{X'}$ is nef. However *X'* is not outcome of MMP for some smooth *X* with $-K_X$ nef (cf. Peternell-Serrano).

Xiaojun WU

Université Côte d'azur

Consequence

Corollary, Matsumura-Wu 23

We consider the MF space $\varphi : X' = X_N \to S$ in 3-dim Kähler MMP. Then, we have: (1) The Bott-Chern cohomology class $-4c_1(K_S) - c_1(\Delta)$ is pseudo-effective, where Δ is the discriminant divisor of the MF space $\varphi : X \to S$ (which is a \mathbb{Q} -conic bundle). (2) The relation $\Delta = 0$ and $c_1(K_S) = 0$ holds; in particular,

 $\varphi: X' \to S$ is toroidal over S. Furthermore, when S are smooth, the variety X is automatically smooth and $\varphi: X' \to S$ is a locally trivial \mathbb{P}^1 -bundle.

Xiaojun WU

Université Côte d'azur

イロト 不得 トイヨト イヨト

Xiaoiun WU

Segre current

End of proof

Let $\varphi: X' \to S$ be the MF space.

- (1) Show that $\varphi_*(-pK_{X'})$ is weakly positively curved with trivial first Chern class for $1 \ll p$ by positivity of direct image.
- (2) Show that $\varphi_*(-pK_{X'})$ is numerical flat orbifold vector bundle (by -23).
- (3) By Campana04, S is either quotient of torus or normal K3. Show that φ_{*}(pB) is trivial over some quasi-étale cover. Deduce a contradiction by intersection numbers if S is not smooth.

イロト イボト イヨト イヨト

End of proof

In general, the positivity of direct image is insensible to singularity. It is conjectured that the fundamental group of the regular part of klt compact Kähler Calabi-Yau space is infinite if and only if it contains a torus factor in the singular Beauville-Bogomolov decomposition theorem. If this holds, Step 3 should be able to generalise to high dimensional case.

Xiaojun WU

Université Côte d'azur

イロト イポト イヨト イヨト

End of proof

Thank you for your attention!

Xiaojun WU

Université Côte d'azur

(a)