Information
Post-doc at Université Côte d’Azur (09/2023-…).
Supervisor: Laurent Stolovitch
Email: Xiaojun.Wu@uni-bayreuth.de,
My current themes of research are Kähler Geometry, Complex Analytic Geometry, Birational Geometry.
Education
2021.9-2023.8 Post-doc, University of Bayreuth, Advisor: Mihai Paun
2021.1-2021.8 Post-doc, Institut Fourier, Université Grenoble-Alpes, Advisor: Jean-Pierre Demailly
2017–2020 Ph.D., Mathematics, Université Grenoble-Alpes, Advisor: Jean-Pierre Demailly
2016–2017 M2, Arithmétique, Analyse, Géométrie, Université Paris-Sud
2013–2017 Cycle d’ingénieur, Ecole Polytechnique
2009–2013 Bachelor, Mathematics, Fudan University
Publications and Preprints
[1] (joint work with Laurent Stolovitch). Ueda foliation problem for complex tori. arXiv:2403.17682.
[2] (joint work with Philipp Naumann). Albanese map for Kähler manifolds with nef anticanonical bundle, arXiv:2310.06695.
[3] (joint work with Shin-ichi Matsumura). Compact Kähler 3-folds with nef anti-canonical bundle. arXiv:2304.03163.
[4] (joint work with Junyan Cao, Patrick Graf, Philipp Naumann, Mihai Paun, Thomas Peternell). Hermite-Einstein metrics in singular settings. arXiv:2303.08773.
[5] On compact Kähler orbifold. arXiv:2302.11914.
[6] Albanese morphism of log smooth klt compact Kähler manifold with nef log anticanonical divisor. arXiv:2301.05194.
[7] Note on holomorphic Morse inequalities tensoring with a coherent sheaf. arXiv:2209.00544.
[8] Note on asymptotic behaviour of the canonical ring. arXiv:2209.02759.
[9] Note on compact Kähler manifold with strongly pseudo-effective tangent bundle. arXiv:2110.02931.
[10] The Bogomolov’s inequality on a singular complex space. arXiv:2106.14650. (Survey paper, non-submitted.)
[11] Pseudo-effective and numerically flat reflexive sheaves. arXiv:2004.14676v2. The Journal of Geometric Analysis. volume 32, Article number: 124 (2022).
[12] On the Nakano vanishing theorem. arXiv:2011.13653. non-submitted.
[13] A study of nefness in higher codimension. arXiv: 2011.14896. Bulletin de la Société Mathématique de France, 150 (1), 2022, p. 209-249.
[14] On Junyan Cao’s vanishing theorem for pseudoeffective line bundles. arXiv:2011.13673. Part of this preprint has been merged into [11].
[15] On a vanishing theorem due to Bogomolov. arXiv:2011.13751. non-submitted.
[16] Intersection theory and Chern classes in Bott-Chern cohomology. arXiv:2011.13759. accepted by Arkiv för Matematik.
[17] On the hard Lefschetz theorem for pseudoeffective line bundles. arXiv:1911.13253v3. International Journal of Mathematics, Vol. 32, No. 06, 2150035 (2021).
Other texts
Ph.D. Thesis: Cohomologie des fibrés holomorphes et classes de Chern. pdf. Defended in 15/12/2020 at Grenoble.
Website of Chinese mathematicians in memory of Jean-Pierre Demailly
Slides for lecture series at AMSS, October 2023.
Overview pdf. Lecture 1 pdf. Lecture 2 pdf.